Type A Power Generating Modules

Form A2-3: Compliance Verification Report for Inverter Connected Power Generating Modules

This form should be used by the **Manufacturer** to demonstrate and declare compliance with the requirements of EREC G99. The form can be used in a variety of ways as detailed below:

1. To obtain Fully Type Tested status

The **Manufacturer** can use this form to obtain **Fully Type Tested** status for a **Power Generating Module** by registering this completed form with the Energy Networks Association (ENA) Type Test Verification Report Register.

2. To obtain Type Tested status for a product

This form can be used by the **Manufacturer** to obtain **Type Tested** status for a productwhich is used in a **Power Generating Module** by registering this form with the relevant parts completed with the Energy Networks Association (ENA) Type Test Verification Report Register.

3. One-off Installation

This form can be used by the **Manufacturer** or **Installer** to confirm that the **Power Generating Module** has been tested to satisfy all or part of the requirements of this EREC G99. This form must be submitted to the **DNO** as part of the application.

A combination of (2) and (3) can be used as required, together with Form A2-4 where compliance of the **Interface Protection** is to be demonstrated on site.

Note:

Within this Form A2-3 the term **Power Park Module** will be used but its meaning can be interpreted within Form A2-3 to mean **Power Park Module**, **Generating Unit or Inverter** as appropriate for the context. However, note that compliance must be demonstrated at the **Power Park Module** level.

If the **Power Generating Module** is **FullyType Tested** and registered with the Energy Networks Association (ENA) Type Test Verification Report Register, the Installation Document (Form A3-1 or A3-2) should include the **Manufacturer's** reference number (the Product ID), and this form does not need to be submitted.

Where the **Power Generating Module** is not registered with the ENA Type Test Verification Report Register or is not **Fully Type Tested** this form (all or in parts as applicable) needs to be completed and provided to the **DNO**, to confirm that the **Power Generating Module** has been tested to satisfy all or part of the requirements of this EREC G99.

PGM technology			Solis-60K-4G		
Manufacturer name		Ningbo Ginlong Tec	Ningbo Ginlong Technologies Co., Ltd.		
Address			No. 57 Jintong Road, Seafront (Binhai) Industrial Park, Xiangshan, Ningbo, Zhejiang, 315712,P.R.China		
Tel	(+86) 574 6580 3377	Web site	www.ginlong.com		
E:mail	kun.zhang@ginlong.com				
Registered Capacity			66kVA		

Type A Power Generating Modules

There are four options for Testing: (1) **Fully Type Tested**, (2) Partially **Type Tested**, (3) one-off installation, (4) tested on site at time of commissioning. The check box below indicates which tests in this Form have been completed for each of the options. With the exception of **Fully Type TestedPGMs** tests marked with * may be carried out at the time of commissioning (Form A4).

Tested option:	1. Fully Type Tested	2.Partiall y Type Tested	3. One-off Man. Info.	4. Tested on Site at time of Commission- ing
0. Fully Type Tested - all tests detailed below completed and evidence attached to this submission	Yes	N/A	N/A	N/A
1. Operating Range				
2. PQ – Harmonics				
3. PQ – Voltage Fluctuation and Flicker				
4. PQ – DC Injection (Power Park Modules only)				
5. Power Factor (PF)*				
6. Frequency protection tripand ride through tests*				
7. Voltageprotectiontrip and ride through tests*				
8. Protection – Loss of Mains Test*, Vector ShiftandRoCoF Stability Test*	N/A			
9. LFSM-O Test*				
10. Protection – Reconnection Timer*				
11. Fault Level Contribution				
12. Self-monitoring Solid State Switch				
13. Wiring functional tests if required by para 15.2.1 (attach relevant schedule of tests)*				
14. Logic Interface (input port)*				

^{*} may be carried out at the time of commissioning (Form A.2-4).

Document reference(s) for **Manufacturers' Information:**

Type A Power Generating Modules

Manufacturer compliance declaration. - I certify that all products supplied by the company with the above**TypeTestedManufacturer's** reference number will be manufactured and tested to ensure that they perform as stated in this document, prior to shipment to site and that no site **Modifications** are required to ensure that the product meets all the requirements of EREC G99.

Signed	Thongkun	On behalf of	宁波崙浪新能源科技有限公司
	23. May.2019	Manufacturerstamp	NINGBO GINLONG TECHNOLOGIES CO.: LTD.

Note that testing can be done by the Manufacturer of an individual component or by an external test house.

Where parts of the testing are carried out by persons or organisations other than the **Manufacturer** then that person or organisation shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests.

Type A Power Generating Modules

A2-3 Compliance Verification Report –Tests for Type A Inverter Connected Power Generating Modules – test record

1. Operating Range: Two tests should be carried with the Power Generating Module operating at RegisteredCapacity and connected to a suitable test supply or grid simulation set. The power supplied by the primary source shall be kept stable within \pm 5 % of the apparent power value set for the entire duration of each test sequence.

Frequency, voltage and **Active Power** measurements at the output terminals of the **Power Generating Module** shall be recorded every second. The tests will verify that the **Power Generating Module**can operate within the required ranges for the specified period of time.

The Interface Protection shall be disabled during the tests.

In case of a PV Power Park Module the PV primary source may be replaced by a DC source.

In case of a full converter **Power ParkModule**(eg wind) the primary source and the prime mover **Inverter**/rectifier may be replaced by a DC source.

Test 1 Voltage = 85% of nominal (195.5 V), Frequency = 47 Hz, Power Factor = 1, Period of test 20s	Tested with the specified conditions ,in the 20 seconds period of time,the inverters operate normally
Test 2 Voltage = 85% of nominal (195.5 V), Frequency = 47.5 Hz, Power Factor = 1, Period of test 90 minutes	Tested with the specified conditions,in the 90 minutes period of time,the inverters operate normally
Test 3 Voltage = 110% of nominal (253 V)., Frequency = 51.5 Hz, Power Factor = 1, Period of test 90 minutes	Tested with the specified conditions,in the 90 minutes period of time,the inverters operate normally
Test 4 Voltage = 110% of nominal (253 V), Frequency = 52.0 Hz, Power Factor = 1, Period of test 15 minutes	Tested with the specified conditions,in the 15 minutes period of time,the inverters operate normally

Type A Power Generating Modules

2. Power Quality - Harmonics:

For **Power Generating Modules** of **Registered Capacity** of less than 75 A per phase (ie 50 kW) the test requirements are specified in Annex A.7.1.5. These tests should be carried out as specified in BS EN 61000-3-12 for single phase equipment and Table 3 of BS EN 610000-3-12 for three phase equipment.

Power Generating Modules with emissions close to the limits laid down in BS EN 61000-3-12 may require the installation of a transformer between 2 and 4 times the rating of the **Power Generating Module**in order to accept the connection to a **Distribution Network**.

For **Power Generating Modules** of **Registered Capacity** of greater than 75 A per phase (ie 50 kW) the installation must be designed in accordance with EREC G5.

Power Generating Module tested to EREC G5

1 Ower Deficialing Module lested to LINEO OO								
Power G	enerating Module ra (rpp)	ating per phase	22	kVA				
Harmonic	At 45-55% of Reg	istered Capacity	100% of Re	gistered Capacity				
	Measured Value MV in Amps	%	Measured Value MV in Amps	%				
2	0.225	0.26	0.070	0.08				
3	2.045	2.35	1.850	2.13				
4	0.695	0.80	0.230	0.26				
5	2.325	2.67	1.735	2.00				
6	0.085	0.10	0.355	0.41				
7	1.780	2.05	0.845	0.97				
8	0.215	0.25	0.045	0.05				
9	0.615	0.71	0.560	0.64				
10	0.415	0.48	0.145	0.17				
11	0.835	0.96	0.605	0.70				
12	0.040	0.05	0.075	0.09				
13	0.535	0.62	0.300	0.35				
14	0.023	0.027	0.035	0.040				
15	0.180	0.208	0.032	0.037				
16	0.033	0.038	0.053	0.061				
	1							

Type A Power Generating Modules

17 0.167 0.193 0.178 0.206 18 0.015 0.017 0.024 0.028 19 0.106 0.122 0.11 0.127 20 0.014 0.016 0.043 0.050 21 0.012 0.014 0.032 0.037 22 0.011 0.013 0.016 0.018 23 0.048 0.055 0.095 0.110 24 0.012 0.014 0.019 0.022 25 0.048 0.055 0.077 0.089 26 0.008 0.009 0.015 0.017 27 0.009 0.010 0.017 0.020 28 0.011 0.013 0.022 0.025 29 0.039 0.045 0.061 0.070 30 0.011 0.013 0.016 0.018 31 0.036 0.042 0.044 0.051 32 0.016 0.018				T	
19 0.106 0.122 0.11 0.127 20 0.014 0.016 0.043 0.050 21 0.012 0.014 0.032 0.037 22 0.011 0.013 0.016 0.018 23 0.048 0.055 0.095 0.110 24 0.012 0.014 0.019 0.022 25 0.048 0.055 0.077 0.089 26 0.008 0.009 0.015 0.017 27 0.009 0.013 0.022 0.025 29 0.039 0.045 0.061 0.070 30 0.011 0.013 0.016 0.018 31 0.036 0.042 0.044 0.051 32 0.016 0.018 0.021 0.024 33 0.019 0.022 0.039 0.045 34 0.018 0.021 0.028 0.032 35 0.029 0.033	17	0.167	0.193	0.178	0.206
20 0.014 0.016 0.043 0.050 21 0.012 0.014 0.032 0.037 22 0.011 0.013 0.016 0.018 23 0.048 0.055 0.095 0.110 24 0.012 0.014 0.019 0.022 25 0.048 0.055 0.077 0.089 26 0.008 0.009 0.015 0.017 27 0.009 0.010 0.017 0.020 28 0.011 0.013 0.022 0.025 29 0.039 0.045 0.061 0.070 30 0.011 0.013 0.016 0.018 31 0.036 0.042 0.044 0.051 32 0.016 0.018 0.021 0.024 33 0.019 0.022 0.039 0.045 34 0.018 0.021 0.028 0.032 35 0.029 0.033	18	0.015	0.017	0.024	0.028
21 0.012 0.014 0.032 0.037 22 0.011 0.013 0.016 0.018 23 0.048 0.055 0.095 0.110 24 0.012 0.014 0.019 0.022 25 0.048 0.055 0.077 0.089 26 0.008 0.009 0.015 0.017 27 0.009 0.010 0.017 0.020 28 0.011 0.013 0.022 0.025 29 0.039 0.045 0.061 0.070 30 0.011 0.013 0.016 0.018 31 0.036 0.042 0.044 0.051 32 0.016 0.018 0.021 0.024 33 0.019 0.022 0.039 0.045 34 0.018 0.021 0.028 0.032 35 0.029 0.033 0.043 0.050 36 0.009 0.010	19	0.106	0.122	0.11	0.127
22 0.011 0.013 0.016 0.018 23 0.048 0.055 0.095 0.110 24 0.012 0.014 0.019 0.022 25 0.048 0.055 0.077 0.089 26 0.008 0.009 0.015 0.017 27 0.009 0.010 0.017 0.020 28 0.011 0.013 0.022 0.025 29 0.039 0.045 0.061 0.070 30 0.011 0.013 0.016 0.018 31 0.036 0.042 0.044 0.051 32 0.016 0.018 0.021 0.024 33 0.019 0.022 0.039 0.045 34 0.018 0.021 0.028 0.032 35 0.029 0.033 0.043 0.050 36 0.009 0.010 0.021 0.024 37 0.038 0.044	20	0.014	0.016	0.043	0.050
23 0.048 0.055 0.095 0.110 24 0.012 0.014 0.019 0.022 25 0.048 0.055 0.077 0.089 26 0.008 0.009 0.015 0.017 27 0.009 0.010 0.017 0.020 28 0.011 0.013 0.022 0.025 29 0.039 0.045 0.061 0.070 30 0.011 0.013 0.016 0.018 31 0.036 0.042 0.044 0.051 32 0.016 0.018 0.021 0.024 33 0.019 0.022 0.039 0.045 34 0.018 0.021 0.028 0.032 35 0.029 0.033 0.043 0.050 36 0.009 0.010 0.021 0.024 37 0.038 0.044 0.058 0.067 38 0.042 0.048	21	0.012	0.014	0.032	0.037
24 0.012 0.014 0.019 0.022 25 0.048 0.055 0.077 0.089 26 0.008 0.009 0.015 0.017 27 0.009 0.010 0.017 0.020 28 0.011 0.013 0.022 0.025 29 0.039 0.045 0.061 0.070 30 0.011 0.013 0.016 0.018 31 0.036 0.042 0.044 0.051 32 0.016 0.018 0.021 0.024 33 0.019 0.022 0.039 0.045 34 0.018 0.021 0.028 0.032 35 0.029 0.033 0.043 0.050 36 0.009 0.010 0.021 0.024 37 0.038 0.044 0.058 0.067 38 0.042 0.048 0.062 0.072 39 0.033 0.038	22	0.011	0.013	0.016	0.018
25 0.048 0.055 0.077 0.089 26 0.008 0.009 0.015 0.017 27 0.009 0.010 0.017 0.020 28 0.011 0.013 0.022 0.025 29 0.039 0.045 0.061 0.070 30 0.011 0.013 0.016 0.018 31 0.036 0.042 0.044 0.051 32 0.016 0.018 0.021 0.024 33 0.019 0.022 0.039 0.045 34 0.018 0.021 0.028 0.032 35 0.029 0.033 0.043 0.050 36 0.009 0.010 0.021 0.024 37 0.038 0.044 0.058 0.067 38 0.042 0.048 0.062 0.072 39 0.033 0.038 0.068 0.079 40 0.035 0.040	23	0.048	0.055	0.095	0.110
26 0.008 0.009 0.015 0.017 27 0.009 0.010 0.017 0.020 28 0.011 0.013 0.022 0.025 29 0.039 0.045 0.061 0.070 30 0.011 0.013 0.016 0.018 31 0.036 0.042 0.044 0.051 32 0.016 0.018 0.021 0.024 33 0.019 0.022 0.039 0.045 34 0.018 0.021 0.028 0.032 35 0.029 0.033 0.043 0.050 36 0.009 0.010 0.021 0.024 37 0.038 0.044 0.058 0.067 38 0.042 0.048 0.062 0.072 39 0.033 0.038 0.068 0.079 40 0.035 0.040 0.055 0.064	24	0.012	0.014	0.019	0.022
27 0.009 0.010 0.017 0.020 28 0.011 0.013 0.022 0.025 29 0.039 0.045 0.061 0.070 30 0.011 0.013 0.016 0.018 31 0.036 0.042 0.044 0.051 32 0.016 0.018 0.021 0.024 33 0.019 0.022 0.039 0.045 34 0.018 0.021 0.028 0.032 35 0.029 0.033 0.043 0.050 36 0.009 0.010 0.021 0.024 37 0.038 0.044 0.058 0.067 38 0.042 0.048 0.062 0.072 39 0.033 0.038 0.068 0.079 40 0.035 0.040 0.055 0.064	25	0.048	0.055	0.077	0.089
28 0.011 0.013 0.022 0.025 29 0.039 0.045 0.061 0.070 30 0.011 0.013 0.016 0.018 31 0.036 0.042 0.044 0.051 32 0.016 0.018 0.021 0.024 33 0.019 0.022 0.039 0.045 34 0.018 0.021 0.028 0.032 35 0.029 0.033 0.043 0.050 36 0.009 0.010 0.021 0.024 37 0.038 0.044 0.058 0.067 38 0.042 0.048 0.062 0.072 39 0.033 0.038 0.068 0.079 40 0.035 0.040 0.055 0.064	26	0.008	0.009	0.015	0.017
29 0.039 0.045 0.061 0.070 30 0.011 0.013 0.016 0.018 31 0.036 0.042 0.044 0.051 32 0.016 0.018 0.021 0.024 33 0.019 0.022 0.039 0.045 34 0.018 0.021 0.028 0.032 35 0.029 0.033 0.043 0.050 36 0.009 0.010 0.021 0.024 37 0.038 0.044 0.058 0.067 38 0.042 0.048 0.062 0.072 39 0.033 0.038 0.068 0.079 40 0.035 0.040 0.055 0.064	27	0.009	0.010	0.017	0.020
30 0.011 0.013 0.016 0.018 31 0.036 0.042 0.044 0.051 32 0.016 0.018 0.021 0.024 33 0.019 0.022 0.039 0.045 34 0.018 0.021 0.028 0.032 35 0.029 0.033 0.043 0.050 36 0.009 0.010 0.021 0.024 37 0.038 0.044 0.058 0.067 38 0.042 0.048 0.062 0.072 39 0.033 0.038 0.068 0.079 40 0.035 0.040 0.055 0.064	28	0.011	0.013	0.022	0.025
31 0.036 0.042 0.044 0.051 32 0.016 0.018 0.021 0.024 33 0.019 0.022 0.039 0.045 34 0.018 0.021 0.028 0.032 35 0.029 0.033 0.043 0.050 36 0.009 0.010 0.021 0.024 37 0.038 0.044 0.058 0.067 38 0.042 0.048 0.062 0.072 39 0.033 0.038 0.068 0.079 40 0.035 0.040 0.055 0.064	29	0.039	0.045	0.061	0.070
32 0.016 0.018 0.021 0.024 33 0.019 0.022 0.039 0.045 34 0.018 0.021 0.028 0.032 35 0.029 0.033 0.043 0.050 36 0.009 0.010 0.021 0.024 37 0.038 0.044 0.058 0.067 38 0.042 0.048 0.062 0.072 39 0.033 0.038 0.068 0.079 40 0.035 0.040 0.055 0.064	30	0.011	0.013	0.016	0.018
33 0.019 0.022 0.039 0.045 34 0.018 0.021 0.028 0.032 35 0.029 0.033 0.043 0.050 36 0.009 0.010 0.021 0.024 37 0.038 0.044 0.058 0.067 38 0.042 0.048 0.062 0.072 39 0.033 0.038 0.068 0.079 40 0.035 0.040 0.055 0.064	31	0.036	0.042	0.044	0.051
34 0.018 0.021 0.028 0.032 35 0.029 0.033 0.043 0.050 36 0.009 0.010 0.021 0.024 37 0.038 0.044 0.058 0.067 38 0.042 0.048 0.062 0.072 39 0.033 0.038 0.068 0.079 40 0.035 0.040 0.055 0.064	32	0.016	0.018	0.021	0.024
35 0.029 0.033 0.043 0.050 36 0.009 0.010 0.021 0.024 37 0.038 0.044 0.058 0.067 38 0.042 0.048 0.062 0.072 39 0.033 0.038 0.068 0.079 40 0.035 0.040 0.055 0.064	33	0.019	0.022	0.039	0.045
36 0.009 0.010 0.021 0.024 37 0.038 0.044 0.058 0.067 38 0.042 0.048 0.062 0.072 39 0.033 0.038 0.068 0.079 40 0.035 0.040 0.055 0.064	34	0.018	0.021	0.028	0.032
37 0.038 0.044 0.058 0.067 38 0.042 0.048 0.062 0.072 39 0.033 0.038 0.068 0.079 40 0.035 0.040 0.055 0.064	35	0.029	0.033	0.043	0.050
38 0.042 0.048 0.062 0.072 39 0.033 0.038 0.068 0.079 40 0.035 0.040 0.055 0.064	36	0.009	0.010	0.021	0.024
39 0.033 0.038 0.068 0.079 40 0.035 0.040 0.055 0.064	37	0.038	0.044	0.058	0.067
40 0.035 0.040 0.055 0.064	38	0.042	0.048	0.062	0.072
	39	0.033	0.038	0.068	0.079
41 0.031 0.036 0.065 0.075	40	0.035	0.040	0.055	0.064
	41	0.031	0.036	0.065	0.075

Type A Power Generating Modules

42	0.036	0.042	0.053	0.061
43	0.029	0.033	0.062	0.072
44	0.037	0.043	0.052	0.060
45	0.028	0.032	0.059	0.068
46	0.039	0.045	0.055	0.064
47	0.030	0.035	0.058	0.067
48	0.038	0.044	0.038	0.044
49	0.029	0.033	0.055	0.064
50	0.035	0.040	0.035	0.040
THD1	10.810	12.28	7.815	8.84
PWHD ²	9.953	12.38	7.299	8.55

3. Power Quality - Voltage fluctuations and Flicker:

For **Power Generating Modules** of **Registered Capacity** of less than 75 A per phase (ie 50 kW) these tests should be undertaken in accordance with Annex A.7.1.4.3. Results should be normalised to a standard source impedance, or if this results in figures above the limits set in BS EN 61000-3-11 to a suitable Maximum Impedance.

For **Power Generating Modules** of **Registered Capacity** of greater than 75 A per phase (ie 50 kW) the installation must be designed in accordance with EREC P28.

	Starting			Stopping			Running	
	d max	d c	d(t)	d max	d c	d(t)	P st	P It 2 hours
Measured Values at test impedance	0.32%	0.24%	0	0.25%	0.18%	0	0.06	0.10
Normalised to standard impedance	0.32%	0.24%	0	0.25%	0.18%	0	0.06	0.10
Normalised to required maximum impedance	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

¹ THD = Total Harmonic Distortion

²PWHD = Partial Weighted Harmonic Distortion

Type A Power Generating Modules

Test Impedance	R	0.24 * 0.4 ^	Ω	ΧI	0.15 * 0.25 ^	Ω
Standard Impedance	R	0.24 * 0.4 ^	Ω	ΧI	0.15 * 0.25 ^	Ω
Maximum Impedance	R	N/A	Ω	XI	N/A	Ω

^{*} Applies to three phase and split single phase **Power Generating Modules**.

For voltage change and flicker measurements the following formula is to be used to convert the measured values to the normalised values where the **Power Factor** of the generation output is 0.98 or above.

Normalised value = Measured value x reference source resistance/measured source resistance at test point

Single phase units reference source resistance is 0.4 $\boldsymbol{\Omega}$

Two phase units in a three phase system reference source resistance is 0.4 Ω

Two phase units in a split phase systemreference source resistance is 0.24 Ω

Three phase units reference source resistance is 0.24 Ω

Where the **Power Factor** of the output is under 0.98 then the XI to R ratio of the test impedance should be close to that of the Standard Impedance.

The stopping test should be a trip from full load operation.

The duration of these tests need to comply with the particular requirements set out in the testing notes for the technology under test. Dates and location of the test need to be noted below

Test start date	22. May.2019	Test end date	23. May.2019		
Test location	Ningbo GinlongTechnologies Co.,Ltd.				

4. Power quality – DC injection: The tests should be carried out on a single **Generating Unit**. Tests are to be carried out at three defined power levels ±5%. At 230 V a 60 kW three phase**Inverter** has a current output of 86.6 A so DC limit is 216.5 mA. These tests should be undertaken in accordance with Annex A.7.1.4.4.

Test power level	10%		55%			100%			
	L1	L2	L3	L1	L2	L3	L1	L2	L3
Recorded value in Amps(mA)	93.8	97.5	100.5	103.2	104.3	106.4	109.8	110.7	115.2
as % of rated AC current	0.108	0.113	0.116	0.119	0.120	0.123	0.127	0.128	0.133
Limit		0.25%			0.25%			0.25%	

5. Power Factor: The tests should be carried out on a single **Power Generating Module**. Tests are to be carried out at three voltage levels and at **Registered Capacity**. Voltage to be maintained within ±1.5% of the

[^] Applies to single phase **Power Generating Module** and **Power Generating Modules** using two phases on a three phase system

Type A Power Generating Modules

stated level during the test. These tests should be undertaken in accordance with Annex A.7.1.4.2.								
Voltage 0.94 pu (216.2 V) 1 pu (230 V) 1.1 pu (253 V)								
Measured value	0.9976	0.9988	0.9985					
Power FactorLimit >0.95 >0.95								

Type A Power Generating Modules

6. Protection – Frequency tests: These tests should be carried out in accordance with the Annex A.7.1.2.3.								
Function	Se	etting	Trip	test	"No trip tests"			
	Frequency	Time delay	Frequency Time delay		Frequency /time	Confirm no trip		
U/F stage 1	47.5 Hz	20 s	47.54Hz	20.048s	47.7 Hz 25 s	Yes		
U/F stage 2	47 Hz	0.5 s 46.96	46.96Hz	0.534s	47.2 Hz 19.98 s	Yes		
					46.8 Hz 0.48 s	Yes		
O/F	52 Hz	0.5 s	52.02Hz	0.546s	51.8 Hz 89.98 s	Yes		
					52.2 Hz 0.48 s	Yes		

Note. For frequency trip tests the frequency required to trip is the setting \pm 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting \pm 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

7. Protection – Voltage tests: These tests should be carried out in accordance with Annex A.7.1.2.2.

Function	Setting		Trip test		"No trip tests"	
U/V	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip
L1-N			183.8V	2.539s	188 V 3.50 s	Yes
L2-N	0.8 pu (184 V)	2.5 s	183.6 V	2.536s		Yes
L3-N			183.2 V	2.532s		Yes
					180 V 2.48 s	Yes
O/V stage 1	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip
L1-N			262.5V	1.041s		Yes
L2-N	1.14 pu (262.2 V)	1.0 s	262.6V	1.037s	258.2 V 2.0 s	Yes
L3-N			262.9V	1.031s		Yes

Type A Power Generating Modules

O/V stage 2	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip	
L1-N			274.4V	0.541s		Yes	
L2- N	1.19 pu (273.7 V)		0.5 s	274.2V	0.539s	269.7 V 0.98s	Yes
L3-N			273.9V	0.533s		Yes	
					277.7 V 0.48 s	Yes	

Note for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

8.Protection – Loss of Mains test: These tests should be carried out in accordance with BS EN 62116. Annex A.7.1.2.4.

The following sub set of tests should be recorded in the following table.

Test Power and imbalance	33% -5% Q Test 22	66% -5% Q Test 12	100% -5% P Test 5	33% +5% Q Test 31	66% +5% Q Test 21	100% +5% P Test 10
Trip time. Limit is 0.5s	0.32s	0.37s	0.27s	0.32s	0.31s	0.35s

Loss of Mains Protection, Vector Shift Stability test. This test should be carried out in accordance with Annex A.7.1.2.6.

	Start Frequency	Change	Confirm no trip
Positive Vector Shift	49.5 Hz	+50 degrees	Yes
Negative Vector Shift	50.5 Hz	- 50 degrees	Yes

Loss of Mains Protection, RoCoF Stability test: This test should be carried out in accordance with Annex A.7.1.2.6.

Ramp range	Ramp range Test frequency ramp:		Confirm no trip
49.0 Hz to 51.0 Hz	+0.95 Hzs ⁻¹	2.1 s	Yes
51.0 Hz to 49.0 Hz	-0.95 Hzs ⁻¹	2.1 s	Yes

Type A Power Generating Modules

9. Limited Frequency Sensitive Mode – Over frequency test: The test is using the specific threshold frequency of 50.4 Hz and Droop of 5%.

This test should be carried out in accordance with Annex A.7.1.3.

Active Power response to rising frequency/time plots are attached if frequency injection tests are undertaken in accordance with Annex A.7.2.4.

Yes

Alternatively, simulation results should be noted below:

Test sequence at Registered Capacity>80%	Measured Active Power Output	Frequency	Primary Power Source	Active Power Gradient
Step a) 50.00Hz ±0.01Hz	60157W	50.00Hz		-
Step b) 50.45Hz ±0.05Hz	58874W	50.45Hz		-
Step c) 50.70Hz ±0.10Hz	52214W	50.70Hz		-
Step d) 51.15Hz ±0.05Hz	40394W	51.15Hz	61259W	-
Step e) 50.70Hz ±0.10Hz	52272W	50.70Hz		-
Step f) 50.45Hz ±0.05Hz	58834W	50.45Hz		-
Step g) 50.00Hz ±0.01Hz	60240W	50.00Hz		
Test sequence at Registered Capacity 40% - 60%	Measured Active Power Output	Frequency	Primary Power Source	Active Power Gradient
Step a) 50.00Hz ±0.01Hz	30208W	50.00Hz		-
Step b) 50.45Hz ±0.05Hz	28797W	50.45Hz		-
Step c) 50.70Hz ±0.10Hz	22244W	50.70Hz		-
Step d) 51.15Hz ±0.05Hz	10368W	51.15Hz	30761W	-
Step e) 50.70Hz ±0.10Hz	22285W	50.70Hz		-
Step f) 50.45 Hz ±0.05 Hz	28827W	50.45Hz		-
Step g) 50.00 Hz ±0.01 Hz	30218W	50.00Hz		-

10. Protection - Re-connection timer.

Test should prove that the reconnection sequence starts after a minimum delay of 20 s for restoration of voltage and frequency to within the stage 1 settings of Table 10.1.

Time delay setting	Measured delay	Checks on no reconnection when voltage or frequency is brought to just outside stage 1 limits of Table 10.1.
--------------------	----------------	--

Type A Power Generating Modules

30s 31s		5	At 1.16 pu (266.2 V)	At 0.85 pu (196.1 V)		At 47.4 Hz	At 52.1 Hz	
	Confirmation that the Power Generating Module does not re-connect.		Yes	Yes		Yes	Yes	
11. Fault level contr A.7.1.5.	ribution: The	ese tests s	shall be carrie	ed out in ac	corda	ance with ERE	C G99 Annex	
For Inverter output								
Time after fa	ıult		Volts			Amps	3	
20ms			55.7V			125A		
100ms			55.5V			0A		
250ms			55.2V			0A		
500ms			55.2V			0A		
Time to trip)		0.062s			In secor	nds	
12. Self-Monitoring	solid state s	witching	: No specified	d test requi	reme	nts.Referto An	nex A.7.1.7.	
switching device failing Module, the voltage	It has been verified that in the event of the solid state switching device failing to disconnect the Power Park Module , the voltage on the output side of the switching device is reduced to a value below 50 volts within 0.5 s.				switch, Solis inverter uses mechanical dual relay protection with relay checks,			
13. Wiring functiona	al tests: If re	quired by	para 15.2.1.					
	Confirm that the relevant test schedule is (tests to be undertaken at time of commission)			N/A(Not inverter is wiring)		icable. Refer ing special c		
14. Logic interface (input port).							
Confirm that an input to shut down the mod	can be used	either on device d Please s device ma	inve epen ee i anua	erface is mark erter or on e iding on inventer or ex I for detail. S al DRM device)	xternal DRM erter model. xternal DRM olis (40-60)K			
Additional comments	Additional comments.							